- кольцо без кручения
- кільце́ без скру́ту
Русско-украинский политехнический словарь. 2013.
Русско-украинский политехнический словарь. 2013.
Модуль без кручения — Модуль без кручения модуль над кольцом без делителей нуля такой, что из равенства , где и , следует или . Примерами таких модулей (левых) являются само кольцо … Википедия
МОДУЛЬ БЕЗ КРУЧЕНИЯ — модуль М над кольцом Абез делителей нуля такой, что из равенства следует или . Примерами таких модулей (левых) являются само кольцо А, а также все его ненулевые левые идеалы. Подмодуль М. б. к., а также прямая сумма и прямое произведение М. б. к … Математическая энциклопедия
ДИСКРЕТНОГО НОРМИРОВАНИЯ КОЛЬЦО — дискретно нормированное кольцо, кольцо с дискретным нормированием, т. е. область целостности с единицей, в к рой существует такой элемент я, что любой ненулевой идеал порождается нек рой степенью элемента я; такой элемент наз. униформизирующим и… … Математическая энциклопедия
ПАРАЛЛЕЛЬНОЕ ПОЛЕ — ковариантно постоянное поле, поле тензоров Ана многообразии Мс линейной связностью , инвариантное относительно параллельного перенесения вдоль кривых на М. Это означает, что для любых точек тензор А р (значение тензорного поля Ав точке р). при… … Математическая энциклопедия
Параллельное поле — или инвариантно постоянное поле тензорное поле на многообразии с линейной связностью , инвариантное относительно параллельного перенесения вдоль кривых на . Это означает, что для любых точек тензор (значение тензорного поля … Википедия
ГРУППОВАЯ АЛГЕБРА — группы G над полем K ассоциативная алгебра над полем К, элементами к рой являются всевозможные формальные конечные суммы вида а операции определяются формулами: (в правой части второй формулы сумма также конечна). Эта алгебра обозначается… … Математическая энциклопедия
АЛЬТЕРНАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — Альтернативным кольцом (А. к.) наз. кольцо, в к ром каждые два элемента порождают ассоциативное подкольцо; альтернативной алгеброй (А. а.) наз. линейная алгебра, являющаяся А. к. Согласно теореме Артина класс всех А. к. задается системой тождеств … Математическая энциклопедия
МОДУЛЬ — абелева группа с кольцом операторов. М. является обобщением (линейного) векторного пространства над полем Кдля случая, когда Кзаменяется нек рым кольцом. Пусть задано кольцо А. Аддитивная абелева группа Мназ. левым А модулем, если определено… … Математическая энциклопедия
ГОСТ Р 53636-2009: Целлюлоза, бумага, картон. Термины и определения — Терминология ГОСТ Р 53636 2009: Целлюлоза, бумага, картон. Термины и определения оригинал документа: 3.4.49 абсолютно сухая масса: Масса бумаги, картона или целлюлозы после высушивания при температуре (105 ± 2) °С до постоянной массы в условиях,… … Словарь-справочник терминов нормативно-технической документации
ПЛОСКИЙ МОДУЛЬ — левый (или правый) модуль Рнад ассоциативным кольцом Rтакой, что функтор тензорного произведения (соответственно ) точен. Приведенное определение эквивалентно любому из следующих: 1) функтор (соответственно ); 2) модуль Рпредставим в виде прямого … Математическая энциклопедия
КОЛЕЦ МНОГООБРАЗИЕ — класс колец M, удовлетворяющих заданной системе полиномиальных тождеств. К. м. можно определить аксиоматически, как наследственный класс алгебр, замкнутый относительно взятия гомоморфных образов и полных прямых сумм (см. Алгебраических систем… … Математическая энциклопедия